16 research outputs found

    The ELM Neuron: an Efficient and Expressive Cortical Neuron Model Can Solve Long-Horizon Tasks

    Full text link
    Traditional large-scale neuroscience models and machine learning utilize simplified models of individual neurons, relying on collective activity and properly adjusted connections to perform complex computations. However, each biological cortical neuron is inherently a sophisticated computational device, as corroborated in a recent study where it took a deep artificial neural network with millions of parameters to replicate the input-output relationship of a detailed biophysical model of a cortical pyramidal neuron. We question the necessity for these many parameters and introduce the Expressive Leaky Memory (ELM) neuron, a biologically inspired, computationally expressive, yet efficient model of a cortical neuron. Remarkably, our ELM neuron requires only 8K trainable parameters to match the aforementioned input-output relationship accurately. We find that an accurate model necessitates multiple memory-like hidden states and intricate nonlinear synaptic integration. To assess the computational ramifications of this design, we evaluate the ELM neuron on various tasks with demanding temporal structures, including a sequential version of the CIFAR-10 classification task, the challenging Pathfinder-X task, and a new dataset based on the Spiking Heidelberg Digits dataset. Our ELM neuron outperforms most transformer-based models on the Pathfinder-X task with 77% accuracy, demonstrates competitive performance on Sequential CIFAR-10, and superior performance compared to classic LSTM models on the variant of the Spiking Heidelberg Digits dataset. These findings indicate a potential for biologically motivated, computationally efficient neuronal models to enhance performance in challenging machine learning tasks.Comment: 23 pages, 10 figures, 9 tables, submitted to NeurIPS 202

    Discrete Key-Value Bottleneck

    Full text link
    Deep neural networks perform well on prediction and classification tasks in the canonical setting where data streams are i.i.d., labeled data is abundant, and class labels are balanced. Challenges emerge with distribution shifts, including non-stationary or imbalanced data streams. One powerful approach that has addressed this challenge involves self-supervised pretraining of large encoders on volumes of unlabeled data, followed by task-specific tuning. Given a new task, updating the weights of these encoders is challenging as a large number of weights needs to be fine-tuned, and as a result, they forget information about the previous tasks. In the present work, we propose a model architecture to address this issue, building upon a discrete bottleneck containing pairs of separate and learnable (key, value) codes. In this setup, we follow the encode; process the representation via a discrete bottleneck; and decode paradigm, where the input is fed to the pretrained encoder, the output of the encoder is used to select the nearest keys, and the corresponding values are fed to the decoder to solve the current task. The model can only fetch and re-use a limited number of these (key, value) pairs during inference, enabling localized and context-dependent model updates. We theoretically investigate the ability of the proposed model to minimize the effect of the distribution shifts and show that such a discrete bottleneck with (key, value) pairs reduces the complexity of the hypothesis class. We empirically verified the proposed methods' benefits under challenging distribution shift scenarios across various benchmark datasets and show that the proposed model reduces the common vulnerability to non-i.i.d. and non-stationary training distributions compared to various other baselines

    A General Purpose Neural Architecture for Geospatial Systems

    Full text link
    Geospatial Information Systems are used by researchers and Humanitarian Assistance and Disaster Response (HADR) practitioners to support a wide variety of important applications. However, collaboration between these actors is difficult due to the heterogeneous nature of geospatial data modalities (e.g., multi-spectral images of various resolutions, timeseries, weather data) and diversity of tasks (e.g., regression of human activity indicators or detecting forest fires). In this work, we present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias, pre-trained on large amounts of unlabelled earth observation data in a self-supervised manner. We envision how such a model may facilitate cooperation between members of the community. We show preliminary results on the first step of the roadmap, where we instantiate an architecture that can process a wide variety of geospatial data modalities and demonstrate that it can achieve competitive performance with domain-specific architectures on tasks relating to the U.N.'s Sustainable Development Goals.Comment: Presented at AI + HADR Workshop at NeurIPS 202
    corecore